Stanniocalcin-1 Controls Ion Regulation Functions of Ion-transporting Epithelium Other than Calcium Balance
نویسندگان
چکیده
Stanniocalcin-1 (STC-1) was first identified to involve in Ca(2+) homeostasis in teleosts, and was thought to act as a hypocalcemic hormone in vertebrate. Recent studies suggested that STC-1 exhibits broad effects on ion balance, not confines to Ca(2+), but the mechanism of this regulation process remains largely unknown. Here, we used zebrafish embryos as an alternative in vivo model to investigate how STC-1 regulates transepithelial ion transport function in ion-transporting epithelium. Expression of stc-1 mRNA in zebrafish embryos was increased in high-Ca(2+) environments but decreased by acidic and ion-deficient treatments while overexpression of stc-1 impaired the hypotonic acclimation by decreasing whole body Ca(2+), Na(+), and Cl(-) contents and H(+) secretion ability. Injection of STC-1 mRNA also down-regulated mRNA expressions of epithelial Ca(2+) channel, H(+)-ATPase, and Na(+)-Cl(-) cotransporter, suggesting the roles of STC-1 in regulation of ions other than Ca(2+). Knockdown of STC-1 caused an increase in ionocyte progenitors (foxi3a as the marker) and mature ionocytes (ion transporters as the markers), but did not affect epithelium stem cells (p63 as the marker) in the embryonic skin. Overexpression of STC-1 had the corresponding opposite effect on ionocyte progenitors, mature ionocytes in the embryonic skin. Taken together, STC-1 negatively regulates the number of ionocytes to reduce ionocyte functions. This process is important for body fluid ionic homeostasis, which is achieved by the regulation of ion transport functions in ionocytes. The present findings provide new insights into the broader functions of STC-1, a hypocalcemic hormone.
منابع مشابه
Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells
Stanniocalcin-1 (STC1) is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca(2+) uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potenti...
متن کاملThe Chick Chorioallantoic Membrane: A Model of Molecular, Structural, and Functional Adaptation to Transepithelial Ion Transport and Barrier Function during Embryonic Development
The chick chorioallantoic membrane is a very simple extraembryonic membrane which serves multiple functions during embryo development; it is the site of exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and H(2)O reabsorption from the allantoic fluid. All these functions are accomplished by its epithelia, the chorionic and the allan...
متن کاملParathyroid hormone-related protein-stanniocalcin antagonism in regulation of bicarbonate secretion and calcium precipitation in a marine fish intestine.
Bicarbonate secretion in the intestine (duodenum) of marine fish has been suggested to play a major role in regulation of calcium availability for uptake. However, while the end process may lead to carbonate precipitation, regulation of transport of calcium and/or bicarbonate may actually result in fine-tuning of calcium availability for transport. To test this hypothesis, sea bream (Sparus aur...
متن کاملIon Transport by Pulmonary Epithelia
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance ...
متن کاملConfocal laser scanning and electron microscopical studies on osmoregulatory epithelia in the branchial cavity of the lobster homarus gammarus
The adult lobster Homarus gammarus is a weak hyper-regulator at low salinity. The objective of this study was to locate the ion-transporting tissues in the branchial chamber of this species, using electron microscopy and confocal laser scanning microscopy with a fluorescent vital stain for mitochondria, DASPMI, which is widely used to locate mitochondria-rich cells in ion-transporting epithelia...
متن کامل